
Charge and density fluctuations lock horns: ionic criticality with power-law forces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 L241

(http://iopscience.iop.org/0305-4470/37/24/L02)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) L241–L248 PII: S0305-4470(04)80377-9

LETTER TO THE EDITOR

Charge and density fluctuations lock horns: ionic
criticality with power-law forces
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Abstract
How do charge and density fluctuations compete in ionic fluids near gas–
liquid criticality when quantum mechanical effects play a role? To gain some
insight, long-range �L

±±
/
rd+σ interactions (with σ > 0), which encompass

van der Waals forces (when σ = d = 3), have been incorporated in exactly
soluble, d-dimensional 1:1 ionic spherical models with charges ±q0 and hard-
core repulsions. In accord with previous work, when d > min{σ, 2} (and q0

is not too large), the Coulomb interactions do not alter the (q0 = 0) critical
universality class that is characterized by density correlations at criticality
decaying as 1/rd−2+η with η = max{0, 2−σ }. But screening is now algebraic,
the charge–charge correlations decaying, in general, only as 1/rd+σ+4; thus
σ = 3 faithfully mimics known noncritical d = 3 quantal effects. But in
the absence of full (+,−) ion symmetry, density and charge fluctuations mix
via a transparent mechanism: then the screening at criticality is weaker by a
factor r4−2η. Furthermore, the otherwise valid Stillinger–Lovett sum rule fails
at criticality whenever η = 0 (as, e.g., when σ > 2) although it remains valid
if η > 0 (as for σ < 2 or in real d � 3 Ising-type systems).

PACS numbers: 64.70.Fx, 64.60.Ht, 51.50.+v, 82.45.Gj

An ionic fluid, such as an electrolyte or a plasma, is characterized in thermal equilibrium by
the screening of the long-range Coulomb interaction potential, zτ zυq2

0

/
rd−2 (say, in d > 2

dimensions) between ions of charges zτ q0 and zυq0. Following the Debye–Hückel theory
[1] one expects the charge–charge correlation function1, GZZ(r), to decay exponentially as
e−r/ξZ,∞ where, as the overall ion density ρ becomes small, the screening length ξZ,∞(T , ρ)

should approach the Debye length ξD ≡ 1/κD ∝
√

T
/
q2

0ρ. More generally, the screening
of an external charge in a conductor should be characterized by the Stillinger–Lovett sum

1 Our notations, which are fairly standard [1], are set out explicitly in [2] which will be denoted by AF.
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rule [1, 3] which does not require exponential screening [4]; this states that when k → 0, the
charge structure factor, essentially the Fourier transform of GZZ(r) (see footnote 1), behaves
as

SZZ(k) = 0 + ξ 2
Z,1k

2 − ξ 4
Z,2k

4 − ξ
ψ

Z,ςkψ + · · · with ξZ,1 = ξD. (1)

Note also that the vanishing leading term simply reflects the requirement of electroneutrality;
if the screening is exponential only the further powers k2l with l = 1, 2, . . . can arise; but, in
general, which specific, nonanalytic powers appear and with what amplitudes is a matter of
prime interest.

The exponential screening of charge has been proved rigorously at low densities for
classical systems [5]; but sufficiently strong short-distance repulsions between oppositely
charged ions are essential while any further non-Coulomb interaction potentials, say ϕτυ(r)
between ions of species τ and υ, must be of short range, decaying, e.g., exponentially fast
when r → ∞. But then, in allowing for quantum mechanics, one should first recognize
that real polarizable ions also interact via fluctuating induced dipole–dipole or van der Waals
forces that fall off only algebraically. Specifically, if for generality we consider integrable
long-range potentials that decay as �L

τυ

/
rd+σ (so requiring σ > 0) [6], van der Waals forces

may be described by d = σ = 3. Then one may ask what will be the consequences of such
long-range power-law forces for exponential screening and for the expansion (1).

However, even in a point-ion model of a plasma, the quantum-mechanical fluctuations
of position lead to effective particle–particle potentials, as manifest in the corresponding
correlation functions, that decrease as 1/r6 (for d = 3) [7, 8], just as for polarizable ions
(or neutral species). Furthermore, it is known that in quantum plasmas at low density, the
screening of charge is no longer exponential: indeed, GZZ(r) has recently been shown to
decay as 1/r10 [7, 8].

On approach to gas–liquid or liquid–liquid criticality, in an ionic system, the situation
is further complicated because the density fluctuations become divergent and it is natural to
ask if this should not seriously affect charge screening, the Stillinger–Lovett rule, etc. To
be more explicit, in a short-range, nonionic system, the density–density correlation function
GNN(r) decays as e−r/ξN,∞ where, on the critical isochore ρ = ρc, the density correlation
length ξN,∞(T , ρ) diverges as 1/tν with t ≡ (T − Tc)/Tc and ν � 1

2 ; but at criticality,
one has

Gc
NN(r) ≡ Dc

NN

/
rd−2+η when r → ∞ (2)

with Dc
NN finite and η � 0. Might not the divergence of ξN,∞ couple in some way to the

screening length ξZ,∞ in a corresponding
(
�L

τυ ≡ 0
)

classical plasma and cause it to diverge
at criticality? Likewise, might not the slow decay of GNN(r) at criticality change the 1/r10

quantal decay of GZZ(r) that has been established at low densities?
Of course, the values of the critical exponents ν and η depend on the critical universality

class, and the influence of Coulomb couplings on criticality has been an important experimental
and theoretical question ever since seemingly convincing observations on certain electrolytes
suggested that ionic criticality might realize a new or different type of critical behaviour [9–11].
While the experimental issues for electrolytes may now be regarded as largely settled—in
favour of no change in critical character—the theoretical situation remains open. And neither
experimentally nor theoretically has a clear picture of the charge correlations near criticality
yet emerged.

One question of particular relevance [11] concerns the role of ion symmetry. Thus, the
simplest theoretical description of a 1:1 electrolyte is afforded by the so-called restricted
primitive model or RPM, in which equisized hard spheres carry charges +q0 and −q0. The
RPM is precisely ion symmetric so that it is plausible that charge and density fluctuations
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will remain effectively independent even at criticality. Indeed, careful simulations [12, 13]
have recently established that criticality in the d = 3 RPM still exhibits Ising behaviour
as do simple, nonionic fluids. But in reality, + and − ions are never identical so that ion
nonsymmetric models are of especial interest. While simulations of 1:1, 2:1 and 3:1 hard
sphere models with unequal diameters have been undertaken [14], their critical behaviour has
not, as yet, been resolved.

To address some of these problems, we have recently analysed [2] a class of exactly soluble
d-dimensional multicomponent spherical models in which particles of different species τ, υ, . . .

reside on distinct but equivalent interlaced sublattices with nearest neighbour spacing a.
Then, in a 1:1 ‘lattice electrolyte’, nearby ions of species + and − with charges ±q0 avoid
collapse because opposite charges are never closer than the minimal, intersublattice distance,
say a0 � a [2]. In addition to the ±q2

0

/
rd−2 Coulomb potentials, short-range attractive

potentials ϕ0
±±(r) of magnitude, say, kBT0 are then introduced; on setting q0 = 0, these suffice

to yield standard spherical model critical behaviour, with η = 0 etc, at Tc(q0 =0) � T0 [2].
Two main conclusions emerge from AF [2]. First, the character of criticality remains

unchanged when the charges are switched on (provided q0 is not too large). Second, ion
symmetry plays a crucial role: thus in symmetric models, the charge screening length
ξZ,∞(T , ρ) remains of order ξD even at (Tc, ρc) although it gains singular corrections when
t → 0; but, in contrast, for asymmetric fluids, ξZ,∞ diverges on approach to criticality,
precisely matching the density correlation length ξN,∞ ∼ 1/tν . Furthermore, the Stillinger–
Lovett rule is then violated at criticality. Here we extend AF by incorporating additional,
long-range �L

±±
/
rd+σ ion–ion potentials in order to cast some light on the further role that

quantum mechanical fluctuations might play. (To avoid technical complications we suppose
σ �= 2, 4, . . . .) As we report, the findings prove instructive.

The necessary analysis follows closely the lines set out in AF: accordingly we focus on
the principal results sketching only the basic technical points. (Further and fuller details will
be presented elsewhere [15].) Thus Lagrange multipliers (λ+, λ−) ≡ λ(T , ρ) are introduced
to satisfy the spherical model constraints

〈
s2
τ

〉 = 1 for τ = +,−, where the sτ (R) are the
usual unbounded scalar spin variables [16–19]. The free energy then follows from the
eigenvalues, �N(k;λ) and �Z(k;λ), of the interaction matrix Λ with elements of the form
�τυ = [λτ δτυ − ϕ̃τυ(k)], where the ϕ̃τυ are proportional to the Fourier transforms of the total
interaction potentials ϕτυ(r).

Now, as in AF, the crucial result is that the q2
0

/
k2 Coulomb divergence cancels out

identically from the first eigenvalue which, at small wave numbers k ≡ |k|, then behaves as

�N(k;λ) = 1
2kBT0

[
λ̇(T , ρ) + (RNk)2 +

(
RL

Nk
)σ

+ · · · ] (3)

where λ̇ (≡ λ/j0 in the notation of AF) is found to vanish on the critical isochore near criticality
like tγ , while the finite, nonzero length RN(λ; q0) measures the range of the short-range forces
(see AF (25)). The relative contribution of the long-range interactions to the density variation
is embodied in the effective range RL

N [15]. From this form for �N one finds (for q0 not too
large) that the critical behaviour is always of spherical model form with exponents β = 1

2 and

η(σ ) = max{0, 2 − σ } γ = 1 − α = (2 − η)ν = 2 − η(σ )

d − 2 + η(σ )
(4)

[6, 16, 19] while d > min{σ, 2} is needed for Tc > 0 (and we suppose
(
RL

N

)σ
> 0 when

σ < 2). For σ >2 these leading exponents are, as well known, independent of σ and the same
as for short-range forces; but see also [20]. However, new correction terms varying as t θσ with
θσ = |2 − σ |ν(σ ) will dominate in all properties when σ is close to 2.
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The long-range effects of the Coulomb forces appear only in the second eigenvalue which,
for small k, varies as

�Z(k;λ) = Sd

4ad

q2
0

k2

[
1 + (RZk)2 +

(
RL

Zk
)2+σ

+ · · · ] (5)

with Sd = 2πd/2/�(d/2). The net contribution of the long-range forces is now represented
by RL

Z while RZ(λ; k/k) is of order a/
√
I0 ∼ a/q0 where the ionicity

I0 = q2
0

/
ad−2kBT0 (6)

measures the overall strength of the Coulomb interactions near criticality. (It should be noted
that the ellipses in (3) and (5) include both further singular terms and analytic terms of order
k4, k6, . . . .)

Finally, we may express the charge and density structure factors in the transparent form

SNN(k)

kBT /4ρad
= 1 − δϕB(k)

�N(k;λ)
+

δϕB(k)

�Z(k;λ)
(7)

SZZ(k)

kBT /4ρad
= δϕB(k)

�N(k;λ)
+

1 − δϕB(k)

�Z(k;λ)

where the basic symmetry parameter δϕ (= λ†/j0 in the notation of AF) vanishes linearly
with the deviation of the potentials ϕτυ from precise (or effective) ion symmetry. Clearly the
density and charge fluctuations in ion-symmetric models are completely uncoupled (at least
in quadratic order): the critical density fluctuations are thus driven solely by �N(k) while
charge screening is entirely controlled by �Z(k). But, charge and density fluctuations mix as
soon as ion symmetry is lost: to what degree is determined by

B(k) = 4k4a4
[
δϕ +

(
RL

ϕ k
)σ

+ · · · ]/S2
dI2

0 (8)

where RL
ϕ measures the strength of the asymmetric parts of the long-range forces (and hence

vanishes with δϕ). A decomposition similar to (7) holds for SNZ; see AF.
The factor k4 in (8) implies that the ‘intrinsic’ charge fluctuations contribute only weakly

to SNN . Consequently, except at (Tc, ρc), one has, neglecting analytic background terms of
order k4,

SNN(k) ∝ χT

1 + ξ 2
N,1k

2 + ξσ
N,σ kσ + · · · + O(δϕk4+σ ) (9)

where χT ∼ 1/tγ is the isothermal compressibility, while the new length scales are

ξN,1(T , ρ) = RN/λ̇1/2 and ξN,σ (T , ρ) = RL
N

/
λ̇1/σ . (10)

Since λ̇ vanishes like tγ on approaching criticality, the density correlation length may be
identified as ξN(T , ρ) = max{ξN,1, ξN,σ } in full accord with the exponent values (4).

Likewise, the critical point decay (2) with η = max{0, 2 − σ } is readily verified. Away
from criticality, however, matters are somewhat more subtle since, in general, no correlation
function, Gτυ(r), can decay faster than the associated 1/rd+σ power-law potentials [21].
Indeed, the first nonanalyticity in SNN(k) yields the large-r behaviour [22] whence we find,
for fixed (T , ρ) �= (Tc, ρc),

GNN(r; T , ρ) ≈ DN,σ

rd−2+η

(
ξN

r

)2σ

∼ 1

rd+σ
when σ < 2 (11a)

≈ DN,σ

rd−2

(
ξN

r

)2 (
ξN,σ

r

)σ

∼ 1

rd+σ
when σ > 2. (11b)
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The appearance of the factor (ξN,σ /r) reflects the correction-to-scaling exponent θσ =
|2 − σ |ν(σ ) identified above.

Now we may study the charge correlations and ask, to start with, about the noncritical
behaviour. When ion symmetry pertains, i.e. δϕ = 0, the decomposition (7) shows that
SZZ depends only on �Z; then (5) leads directly to the expansion (1) with, furthermore, full
confirmation of the Stillinger–Lovett (SL) relation [2, 17] (since κ2

D = Sdρq2
0/kBT ). But, by

virtue of the factor k4 in (8), this remains true even when ion symmetry is absent. In addition,
the coefficient of k4 in (1) is given by

ξ 4
Z,2 = ξ 2

D

[
R2

Z − b0δ
2
ϕξσ

N,σ (T , ρ)
]

(12)

with b0 = O(a2−σ ). Evidently, this moment of GZZ is unconstrained and if δϕ �= 0 it will
change sign when, driven by the coupling to the density fluctuations embodied in (7), ξσ

N,σ

diverges like 1/tγ as T → Tc on the critical isochore: see (10).
Finally, the leading nonanalytic term in SZZ(k) is given, in (1), by ψ = 4 + σ while its

amplitude is

ξ 4+σ
Z,ς = ξ 2

D

[(
RL

Z

)2+σ − b1δϕ

(
RL

ϕ ξN,σ

)σ
+ b0δ

2
ϕξ 2σ

N,σ

]
(13)

where b1 = O(a2−σ ). Clearly, this k4+σ term is present whether or not ion symmetry
pertains; but if δϕ �= 0 it may change sign and its magnitude will diverge, like 1/t2γ , when
(T , ρ) → (Tc, ρc). More strikingly, however, the presence of this term ensures the destruction
of exponential screening; rather one finds [22]

GZZ(r; T , ρ) ≈ DZ,σ

rd

(
ξZ,ς

r

)4+σ

∼ 1

rd+σ+4
. (14)

Thus near to or far from criticality, long-range forces always undermine the standard picture
of Debye screening. Nevertheless, algebraic screening remains in the charge correlations.
Indeed, we may say that the 1/rd−2 Coulomb potential is screened by a factor 1/r6+σ or,
equivalently, that the long-range 1/rd+σ potential is screened—owing to the requirements of
‘local electroneutrality’—by the factor 1/r4. This is a central result of our analysis and it is
gratifying that on setting σ = d = 3 it reproduces the 1/r10 screening previously found in a
fully quantum-mechanical analysis of point-charge plasmas [7, 8].

In contrast to the loss of exponential screening, ion symmetry is paramount at criticality.
Thus we see from (5) and (7) that all the results (12)–(14) remain uniformly valid when
(T , ρ) → (Tc, ρc) provided δϕ = 0, i.e. that ion symmetry is valid: one need only note that the
amplitudes R2

Z and DZ,σ (ξZ,ς )4+σ in (12) and (14) remain finite (and nonzero) at the critical
point although the former will pick up a singular t1−α correction (as in AF: see [15]).

On the other hand, for nonsymmetric fluids at criticality, the mixing of the charge and
density fluctuations depends strongly on σ or, more specifically, on η(σ ). Indeed, displaying
only the leading singular terms, we find

Sc
ZZ(k) = ξ 2

D,ck
2
[
1 + δ2

ϕ(R>k)2−σ + O(k2)
]

for η = 2 − σ > 0 (15a)

= ξ 2
D,ck

2
[
Ec − δ2

ϕ(R<k)σ−2 + O(k2)
]

for η = 0 < σ −2 (15b)

where R2−σ
> = ã2

(
RL

N

)−σ
, Rσ−2

< = ã2
(
RL

N

)σ/
R4

N , Ec = 1 + δ2
ϕã2

/
R2

N > 1 with ã(q0) =
a
√

2/SdI0: see AF (29). One sees immediately that the Stillinger–Lovett sum rule remains
valid whenever σ < 2 or η > 0. This contrasts with the results of AF where, in the absence
of long-range forces, one has η = 0 and the sum rule is violated, precisely the situation that
prevails here when σ > 2; then the critical system may be regarded as an insulator or, at least,
as an anomalous conductor!
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Table 1. Long-distance behaviour of the charge correlations GZZ(r) at fixed (T , ρ). The density
correlation length ξN diverges on the critical isochore ρ = ρc as 1/tν when t = (T −Tc)/Tc → 0.
The density correlations decay as 1/rd+σ away from criticality, but at criticality, since η =
max{0, 2−σ }, they decrease more slowly as 1/rd−σ when σ < 2 and 1/rd−2 when σ > 2.

GZZ(r) Ion symmetric Nonsymmetric
δϕ = 0 δϕ �= 0

(T , ρ) σ < 2 σ > 2

= (Tc, ρc) ∼1/rd+σ+4 ∼1/rd+4−σ ∼1/rd+σ

�= (Tc, ρc) ∼1/rd+σ+4 ∼ (ξN/r)4−2η /rd+4−σ ∼ (ξN/r)4 /rd+σ

From (15) we can now deduce the long-range behaviour of the critical-point charge–charge
correlation function, namely

Gc
ZZ(r) ≈ Dc

Z,σ δ2
ϕR2−σ

>

rd+4−σ
∼ 1

rd−2+η

1

r4
for η(σ ) > 0 (16a)

≈ Dc
Z,σ δ2

ϕRσ−2
<

rd+σ
∼ 1

rd−2+η

1

r2+σ
for η = 0 < σ − 2. (16b)

As displayed, the results show that although Gc
ZZ(r) is driven by the critical density

fluctuations, with Gc
NN ∼ 1/rd−2+η, the charge correlations are screened relatively more

strongly when σ > 2 than for σ < 2, when η > 0. In light of the failure of the SL rule in the
former case rather than the latter, this is, perhaps, paradoxical. On the other hand, one might
equally conclude that the long-range 1/rd+σ potentials are not screened, even algebraically,
when σ > 2 (with η = 0) whereas for σ < 2 the long-range forces are actually screened by
factors 1/r2η = 4−2σ . From that perspective the validity of the SL rule when η > 0 seems more
natural [11].

Finally, similar conclusions can be drawn about the charge-density structure factor: see
AF. Away from criticality we find

SNZ(k) = δϕλ̇−1ξ 2
Dk2[1 − (ξ̃N,σ k)σ + · · ·] (17)

where ξ̃ σ
N,σ = ξσ

N,σ −(
RL

ϕ

)σ/
δϕ and one should recall from (10) that

∣∣ξσ
N,σ (T , ρ)

∣∣ ∝ 1/λ̇(T , ρ)

diverges like 1/tγ while, by (8), RL
ϕ vanishes with δϕ . In real space the long-range decay can

be written as

GNZ(r; T , ρ) ≈ δϕDNZ

rd+|σ−2|

(
ξN

r

)4−2η(σ )

∼ 1

rd+σ+2
(18)

so that the cross-correlation function is evidently screened by the factor 1/r2 relative to the
long-range potentials. Alternatively, one may say that the 1/rd−2 Coulomb interaction is
screened by a factor 1/r4+σ . As regards the ‘van der Waals case’ d = σ = 3, we may mention
that the charge density induced by an infinitesimal local external charge decays as 1/r8 in a
fully quantal point-charge plasma [7, 8].

At the critical point itself, one finds that Sc
NZ(0) vanishes identically if η > 0 (σ < 2)

but that, as in the short-range case [2], Sc
NZ(0) = δϕ(ξD/RN)2

c �= 0, whenever η = 0 (σ > 2).
Moreover, when r → ∞ one has Gc

NZ(r) ∼ δϕ/rd+|σ−2| so that the infection of the charge
correlations by the density fluctuations again reduces the screening by a factor r4−2η that is
greatest when η = 0: compare with the results for GZZ(r) as displayed in table 1.

In conclusion, we have analysed the interplay between long-range density fluctuations,
Coulomb interactions and power-law 1/rd+σ (e.g. van der Waals) interactions, away from, close
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to and at criticality in ionic fluids, on the basis of two-component, d-dimensional spherical
models with hard-core interspecies repulsions [2]. Throughout the fluid phase, including low
densities, the power-law forces destroy the usual Debye exponential screening. However,
algebraic charge–charge and density–charge screening is still present: explicitly, although the
density–density correlation function GNN(r) decays no faster than the interaction potentials
[21], i.e. as 1/rd+σ , the charge–charge correlation function, GZZ(r), decays at large distances
as DZ(T , ρ)/rd+σ+4. If one sets σ = 3 to mimic the 1/r6 particle–particle interactions that
arise in d = 3 dimensions from quantal fluctuations [7, 8], this result is, indeed, in accord
with exact results for GZZ(r) in a fully quantum-mechanical, point-charge plasma at low
densities [7, 8].

In the critical region, the Coulomb interactions leave the universality class of the spherical
models unchanged since, as in AF, they still cancel out the fluctuation factor that drives
criticality. Nevertheless, radical changes arise in the charge–charge and charge–density
fluctuations, whether the system is ion symmetric or, more realistically, nonsymmetric. The
behaviour is enforced by a general decomposition of the structure factors: see (7) and [2]. For
ion symmetric fluids, the asymptotic amplitude DZ(T , ρ) is always finite and the Stillinger–
Lovett (SL) sum rule is satisfied even at criticality. For asymmetric systems near criticality,
DZ is driven by the density fluctuations and hence diverges as 1/t2γ when ρ = ρc while the
SL sum rule remains valid. At criticality, however, the density correlations, decaying now as
1/rd−2+η, weaken the charge screening still further, more strongly when η = 0 (σ > 2) than
if η > 0 (σ < 2); see the summary in table 1. Finally, the SL sum rule, characteristic of
conductors, is satisfied at criticality when η > 0, but is violated when η = 0, a result that may
well have validity beyond the ionic spherical models studied here [11]. A further challenge
is to see how far similar results might be obtained for intrinsically quantal spherical models
such as those that have been advanced in the past [18, 23–25].
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